Bayesian game 贝叶斯博弈
(重定向自Perfect Bayesian equilibrium)
In game theory, a Bayesian game is one in which information about characteristics of the other players (i.e. payoffs) is incomplete. Following John C. Harsanyi's framework, a Bayesian game can be modelled by introducing Nature as a player in a game. Nature assigns a random variable to each player which could take values of types for each player and associating probabilities or a probability density function with those types (in the course of the game, nature randomly chooses a type for each player according to the probability distribution across each player's type space). Harsanyi's approach to modeling a Bayesian game in such a way allows games of incomplete information to become games of imperfect information (in which the history of the game is not available to all players). The type of a player determines that player's payoff function. The probability associated with a type is the probability that the player, for whom the type is specified, is that type. In a Bayesian game, the incompleteness of information means that at least one player is unsure of the type (and so the payoff function) of another player.