切比雪夫不等式 Chebyshev's inequality
在概率论中,切比雪夫不等式(英语:Chebyshev's Inequality)显示了随机变量的「几乎所有」值都会「接近」平均。切比雪夫不等式,对任何分布形状的数据都适用。
网站首页 情感咨询 情感美文 情感百科 情感生活 学习充电 旧版美文
词汇 | Tchebycheff inequality |
分类 | 英语词汇 英语翻译词典 |
释义 |
Tchebycheff inequality
中文百科
切比雪夫不等式 Chebyshev's inequality(重定向自Tchebycheff inequality)
在概率论中,切比雪夫不等式(英语:Chebyshev's Inequality)显示了随机变量的「几乎所有」值都会「接近」平均。切比雪夫不等式,对任何分布形状的数据都适用。
英语百科
Chebyshev's inequality 切比雪夫不等式(重定向自Tchebycheff inequality)
In probability theory, Chebyshev's inequality (also spelled as Tchebysheff's inequality, Russian:Нера́венство Чебышёва) guarantees that in any probability distribution, "nearly all" values are close to the mean — the precise statement being that no more than 1/k of the distribution's values can be more than k standard deviations away from the mean (or equivalently, at least 1−1/k of the distribution's values are within k standard deviations of the mean). The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to completely arbitrary distributions (unknown except for mean and variance). For example, it can be used to prove the weak law of large numbers. |
随便看 |
|
依恋情感网英汉例句词典收录3870147条英语例句词条,基本涵盖了全部常用英语单词的释义及例句,是英语学习的有利工具。