Let G be an infinite group. If G has a normal elementary abelian subgroup, then G is irrecognizable.
设G是无限群,若G存在正规初等交换子群,则G是不可分辨的.
中文百科
正规子群 Normal subgroup
(重定向自Normal subgroups)
在抽象代数中,正规子群或不变子群指一类特殊的子群。由正规子群,可以引导出商群的概念。
埃瓦里斯特·伽罗瓦是最早认识到正规子群的重要性的人。
英语百科
Normal subgroup 正规子群
(重定向自Normal subgroups)
In abstract algebra, a normal subgroup is a subgroup which is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup H of a group G is normal in G if and only if gH=Hg for all g inG, i.e., the sets of left and right cosets coincide. Normal subgroups (and only normal subgroups) can be used to construct quotient groups from a given group.