Completion (algebra) 完备化 (环论)
(重定向自Complete local ring)
In abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have simpler structure than the general ones and Hensel's lemma applies to them. Geometrically, a completion of a commutative ring R concentrates on a formal neighborhood of a point or a Zariski closed subvariety of its spectrum Spec R.