网站首页  情感咨询  情感美文  情感百科  情感生活  学习充电  旧版美文

请在此处输入要查询的问题:

 

标题 二分之一LR公式全解析:从基础到应用一网打尽
类别 公式大全
内容

二分之一LR公式是机器学习领域中一种常见的概率模型,广泛应用于分类、预测等任务中。它通过计算样本属于正类或负类的概率,为后续的决策提供依据。本文将全面介绍二分之一LR公式的原理、推导过程以及在实际应用中的使用方法,帮助读者深入理解并灵活运用这一重要工具。

一、二分之一LR公式的基本原理

二分之一LR公式是基于逻辑回归模型建立的,其核心思想是通过构建一个sigmoid函数来描述样本属于正类的概率。sigmoid函数的表达式为:

$$P(y=1|x) = \frac{1}{1 e^{-(\beta_0 \beta_1x)}}$$

其中,x为样本的特征向量,y=1表示样本属于正类,y=0表示样本属于负类。$\beta_0$和$\beta_1$是需要通过训练数据估计出的参数。

有了样本属于正类的概率,我们就可以进一步计算样本属于负类的概率:

$$P(y=0|x) = 1 - P(y=1|x)$$

综合以上两个公式,我们就得到了二分之一LR公式的标准形式:

$$P(y=1|x) = \frac{1}{1 e^{-(\beta_0 \beta_1x)}}$$ $$P(y=0|x) = 1 - \frac{1}{1 e^{-(\beta_0 \beta_1x)}}$$

二、二分之一LR公式的参数估计

要使用二分之一LR公式,首先需要确定参数$\beta_0$和$\beta_1$的值。通常采用极大似然估计的方法来估计这两个参数:

  1. 设训练样本集为{(x1,y1),(x2,y2),...,(xn,yn)},其中n为样本数量。
  2. 构建似然函数: $$L(\beta_0,\beta_1) = \prod_{i=1}^n P(y_i|x_i)$$
  3. 对似然函数取对数得到对数似然函数: $$l(\beta_0,\beta_1) = \sum_{i=1}^n [y_i\log P(y_i=1|x_i) (1-y_i)\log P(y_i=0|x_i)]$$
  4. 对对数似然函数求偏导,得到关于$\beta_0$和$\beta_1$的导数方程,并令导数等于0解出$\beta_0$和$\beta_1$的值。

通过上述步骤就可以得到二分之一LR公式的参数估计值,进而计算出样本属于正类或负类的概率。

三、二分之一LR公式的应用实例

二分之一LR公式广泛应用于各种分类和预

随便看

 

依恋情感网是专业女性资讯平台,专注于为女性朋友们提供美容、服饰、情感、职场、育儿、健康、饮食、家居等资讯内容。

 

Copyright © 2002-2024 yiyi18.com All Rights Reserved
更新时间:2025/8/4 17:54:01