Benford's law 本福特定律
(重定向自Anomalous number)
Benford's law, also called the first-digit law, is a phenomenological law about the frequency distribution of leading digits in many (but not all) real-life sets of numerical data. The law states that in many naturally occurring collections of numbers, the leading significant digit is likely to be small. For example, in sets which obey the law, the number 1 appears as the most significant digit about 30% of the time, while 9 appears as the most significant digit less than 5% of the time. By contrast, if the digits were distributed uniformly, they would each occur about 11.1% of the time. Benford's law also makes (different) predictions about the distribution of second digits, third digits, digit combinations, and so on.